MRT: Optimal polarisiert

25. September 2014
Teilen

Ein Forscherteam hat nun eine neue, kostengünstige Methode für die Magnetresonanztomographie (MRT) entwickelt und erläutert jetzt in einer aktuellen Publikation deren zugrundeliegenden Mechanismus.

Die Magnetresonanztomographie ist ein Schnittbildverfahren, mit dem Weichgewebestrukturen vom Inneren des Körpers sehr gut und ohne schädliche Strahlung dargestellt werden können. In einem künstlichen Magnetfeld wird ein Teil der magnetischen Momente der Wasserstoffatome im Körpergewebe ausgerichtet und durch Radiofrequenzwellen angeregt, woraufhin sie wieder in ihren ursprünglichen Zustand zurückkehren. Dabei werden je nach Struktur und Wassergehalt des Gewebes unterschiedliche Signale ausgesendet, anhand derer das Schnittbild berechnet wird.

Üblicherweise sind sehr teure Spezialmagnete nötig, um eine ausreichende Signalstärke zu erhalten. Bei der neu entwickelten kontinuierlichen Hyperpolarisation richtet sich bereits in niedrigen Magnetfeldern ein weit größerer Anteil der Wasserstoffatome aus. Selbst in einem sehr schwachen Magnetfeld, das mit einer einfachen Batterie erzeugt werden kann, entsteht so ein hundert Mal stärkeres Signal als in kliniküblichen MRT-Anlagen. Und dank Parawasserstoff steht der Polarisierungseffekt beliebig lange zur Verfügung: Normales Wasserstoffgas, dessen Atomkerne sich in einem besonderen Quantenzustand befinden, sorgt mit einer chemischen Austauschreaktion dafür, dass sich die Polarisierung nach jeder Messung erneuert und so Mehrfach-Aufnahmen möglich macht.

In ihrer neuesten Arbeit untersuchten die Freiburger Forscher, welche Faktoren diesen Effekt der kontinuierlichen Hyperpolarisation beeinflussen: „Wir sind auf der Suche nach den optimalen Bedingungen für dieses Verfahren. Der Vergleich von theoretischer Simulation und experimentellen Ergebnissen zeigt, dass Verweildauer (Temperatur) und Konzentration des Parawasserstoffs ebenso eine Rolle spielen wie die Stärke des Magnetfelds“, sagt Hövener, der in der Medizinphysik der Radiologischen Klinik des Universitätsklinikums Freiburg forscht. „Es war wichtig, diesen neuen Effekt erst einmal zu verstehen, bevor man über biomedizinische Anwendungen nachdenken kann. Erfreulicherweise ist uns dies jetzt gelungen“.

Originalpublikation:

Continuous Re-hyperpolarization of Nuclear Spins Using Parahydrogen: Theory and Experiment
Jan-Bernd Hövener et al.; ChemPhysChem, doi: 10.1002/cphc.201402177; 2014

27 Wertungen (4.89 ø)

Die Kommentarfunktion ist nicht mehr aktiv.

Copyright © 2017 DocCheck Medical Services GmbH
Sprache:
DocCheck folgen: