Primäre Sehrinde: Nervenzellen subtrahieren Bilder

18. Dezember 2013
Teilen

Forscher beschrieben nun, wie die primäre Sehrinde Daten weiterverarbeitet. Sie konnten nachweisen, dass das Gehirn nicht immer die vollständige Bildinformation überträgt, sondern sich der Unterschiede zwischen aktuellen und zuvor gesehenen Bildern bedient.

Bislang gingen Forscher davon aus, dass Informationen in der Eingangsstation des Sehsinns weitestgehend vollständig an höhere Gehirnareale weitergeleitet werden und dort zu Bildeindrücken führen. „Es ist daher überraschend, dass bereits in der Sehrinde, dem Flaschenhals auf dem Weg in das Großhirn, eine erhebliche Reduktion der Datenmenge erfolgt“, sagt PD Dr. Dirk Jancke vom Institut für Neuroinformatik der RUB. „Intuitiv würde man denken, dass unser Sehsystem ähnlich wie eine Videokamera fortwährend Bilder erzeugt. Wir zeigen hingegen, dass die Sehrinde redundante Informationen energiesparend unterdrückt, indem sie häufig nur Bilddifferenzen weiterleitet.“

Plus oder minus: zwei Codierungsstrategien des Gehirns

Die Forscher registrierten die Antworten von Nervenzellen auf natürliche Bildsequenzen, zum Beispiel Szenen, in denen Vegetationslandschaften oder Gebäude abgebildet waren. Von den Bildern erstellten sie zwei Versionen: eine vollständige und eine, in der sie gezielt bestimmte Elemente entfernten, nämlich vertikale oder horizontale Konturen. War die Zeitspanne zwischen den einzelnen Bildern kurz, 30 Millisekunden, repräsentierten die Nervenzellen die vollständige Bildinformation. Das änderte sich bei Sequenzen mit Zeitabständen über 100 Millisekunden. Nun repräsentierten die Zellen ausschließlich neu hinzukommende oder fehlende Elemente, also Bilddifferenzen. „Wenn wir eine Szene analysieren, führt das Auge sehr schnelle Miniaturbewegungen aus, um die feinen Details zu erfassen“, erklärt Nora Nortmann, Doktorandin am Institut für Kognitionspsychologie der Universität Osnabrück und der RUB-Arbeitsgruppe Optical Imaging. Die Sehrinde leitet diese Detailinformationen vollständig und unmittelbar weiter. „Bei Blickwechseln, die etwas mehr Zeit in Anspruch nehmen, codiert sie hingegen, was sich in den Bildern ändert“, so Nortmann weiter. Dadurch stechen bestimmte Bildbereiche hervor, und interessante Orte lassen sich leicht detektieren, spekulieren die Forscher.

„Unser Gehirn schaut permanent in die Zukunft“

Die Studie zeigt, wie Aktivitäten von visuellen Nervenzellen durch vergangene Ereignisse beeinflusst sind. „Die Zellen bauen eine Art Kurzzeitgedächtnis auf, das konstante Eingänge speichert“, erklärt Dirk Jancke. Ändert sich abrupt etwas im wahrgenommenen Bild, generiert das Gehirn auf Basis der vergangenen Bilder eine Art Fehlersignal. Dieses Signal spiegelt dann nicht den aktuellen Eingang wider, sondern wie der aktuelle Eingang von der Erwartung abweicht. Bislang nahmen Forscher an, dass diese sogenannte prädiktive Codierung nur in höheren Gehirnarealen stattfindet. „Wir zeigen, dass das Prinzip bereits für frühe Stufen der kortikalen Verarbeitung zutrifft“, resümiert Jancke. „Unser Gehirn schaut permanent in die Zukunft und vergleicht aktuelle Eingänge mit Erwartungen, die sich aus vergangenen Situationen ergeben.“

1351_Sehrinde_block

Wenn die Sehrinde hintereinander ein vollständiges Bild und ein Bild mit fehlenden Elementen – hier vertikalen Konturen – verarbeitet, „berechnet“ sie die Unterschiede (unten). © RUB, Bild: Jancke

Gehirnaktivität im Millisekundenbereich beobachten

Um die Dynamik der Nervenzellaktivität im Gehirn im Millisekundenbereich zu verfolgen, verwendeten die Wissenschaftler spannungsabhängige Farbstoffe. Diese Stoffe fluoreszieren, wenn Nervenzellen elektrische Impulse erhalten und aktiv werden. Ein hochauflösendes Kamerasystem und eine anschließende computergestützte Analyse erlauben, die Nervenzellaktivität über Oberflächen von mehreren Quadratmillimetern Größe zu messen. Auf diese Weise entsteht ein zeitlich und räumlich präziser Film der Verarbeitungsprozesse in neuronalen Netzwerken.

Originalpublikation:

Primary visual cortex represents the difference between past and present
Nora Nortmann et al.; Cerebral Cortex, doi: 10.1093/cercor/bht318; 2013

13 Wertungen (4.85 ø)

Die Kommentarfunktion ist nicht mehr aktiv.

Copyright © 2017 DocCheck Medical Services GmbH
Sprache:
DocCheck folgen: