Herzentwicklung: Neuer Regelkreis entdeckt

15. Oktober 2013
Teilen

Wissenschaftler haben nun entdeckt, dass kurze RNA-Moleküle die Ausbildung von Herzmuskelzellen im Embryo steuern. Die Kombination zweier Moleküle, miR-1 und miR133, ist verantwortlich für die Bildung von Herzmuskelzellen aus ihren Vorläufern.

Die Entwicklung des Herzens vom einfachen Zellhaufen hin zum fertig entwickelten, funktionellen Herz unterliegt einer komplexen Regulation. Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim haben nun entdeckt, dass kurze Ribonukleinsäure-Moleküle eine entscheidende Rolle bei Steuerung der Genaktivität in der frühen Phase der Herzentwicklung spielen. Die Kombination zweier Moleküle, miR-1 und miR133, ist verantwortlich für die Bildung von Herzmuskelzellen aus ihren Vorläufern. Diese sind zudem Teil eines Regelkreises, der an der Entstehung von Herzerkrankungen beteiligt ist.

MicroRNAs (miRNAs) wurden erst vor zwei Jahrzehnten entdeckt. Schon bald stellte sich heraus, dass diese Moleküle eine herausragende Rolle für die Regulation der Aktivität von Genen haben. Mittlerweile glauben Forscher, dass mehr als die Hälfte aller Gene durch die kurzen RNA-Abschnitte reguliert wird.  Im menschlichen Genom sollen über 1000 verschiedene miRNAs codiert sein. Die Bedeutung von miRNAs für die Steuerung verschiedenster biologischer Prozesse ist in den letzten Jahren immer deutlicher geworden.

miR-1 und miR133 beeinflussen Reifung des Herzens

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung haben nun eine fundamentale Rolle zweier als miR-1/133a bezeichneten miRNAs für die frühe Herzentwicklung entdeckt. Für ihre Studie verwendeten sie sogenannte Doppel-Knockout-Mäuse, bei denen alle Kopien der beiden miRNA-Gene ausgeschaltet waren. „Wir konnten bei diesen Mäusen beobachten, dass das Herz zwar zunächst völlig normal angelegt wird, die Reifung des Herzens ab dem 11. Tag dann aber unterbleibt“, sagt der Studienleiter Thomas Böttger. Normalerweise sind ab diesem Zeitpunkt erstmals funktionale Herzmuskelzellen zu beobachten. Dieser Reifeprozess ist bei den Doppel-Knockout-Tieren aber ausgeblieben.

Stattdessen stellten die Forscher in Genanalysen fest, dass in den Zellen weiter vor allem solche Gene aktiv waren, die charakteristisch für einen anderen Muskelzelltyp waren, sogenannte glatte Muskelzellen. Üblicherweise werden diese im Embryo ab dem 11. Tag inaktiv. Verantwortlich dafür ist vor allem ein Protein mit dem Namen Myocardin. In den Mäusen, bei denen miRNA-1 und miRNA133a ausgeschaltet war, entdeckte Böttgers Arbeitsgruppe eine ungewöhnlich hohe Aktivität des Myocardin-Gens. „Wir gehen davon aus, dass miR-1/133a dafür verantwortlich ist, ab einer bestimmten Phase der Herzentwicklung das Myocardin abzuschalten. Weil bei unseren Mäusen miR-1/133a fehlt, geschieht dies nicht. Darauf verhindert Myocardin die Reifung zur Herzmuskelzelle“, sagt Böttger.

1342_Myosin_block

Bei genetisch nicht veränderten Mäusen, sogenannten Wildtyp-Mäusen, nimmt die Muskelmasse durch Zellteilung (rot) zu (links). Dadurch entwickelt sich auch die Herzwand (weiße Markierung). Im Gegensatz dazu ist die Herzentwicklung bei gentechnisch veränderten Mäusen gestört, denen mRNA-1/133 fehlt (rechts). Ursache für den geringeren Muskelaufbau ist eine verringerte Zellteilungsrate. In beiden Abbildungen ist Myosin, ein Marker für Muskelzellen, grün gefärbt, Zellkerne blau. © MPI f. Herz- und Lungenforschung

Zusammenspiel zwischen Myocardin und miR-1/133

Bestätigt wurde diese Erklärung durch Versuche an Mäusen, die durch einen genetischen Eingriff  Myocardin dauerhaft im Überschuss produzieren. Die Forscher stellten fest, dass bei diesen Mäusen dieselben Effekte auftraten wie bei den miR-1/133a Knockout-Mäusen: Auch hier blieb die Reifung der Zellen und ihre Entwicklung zu funktionellen Herzmuskelzellen aus. „Unsere Untersuchungen haben gezeigt, dass die Herzentwicklung von einem klassischen Regelkreis gesteuert wird“, so Böttger. Über das Zusammenspiel zwischen Myocardin und mR-1/133 entscheidet sich die Art und Funktion der Muskelzelle. Der Regelkreis ist auch dafür verantwortlich, dass im ausgewachsenen Herz die Herzmuskelzellen stabil blieben.

Bei Patienten mit bestimmten Herzerkrankungen gerät der von den Forschern entdeckte Regelkreis hingegen aus der Balance: „Man kann am gestressten Herz beobachten, dass ausgewachsene Herzmuskelzellen ein vergleichbares embryonales Genprogramm aktivieren, wie wir es bei den Knock-out Mäusen gesehen haben“, erklärt Thomas Braun, Direktor am Max-Planck-Institut. „Um daraus resultierende Schädigungen des Herzmuskels therapeutisch zu behandeln,  muss man die zugrunde liegenden Mechanismen verstehen. Dabei hilft die Studie“, so Braun weiter.
Auch für eventuelle Stammzelltherapien am Herz ist das Wissen über den Regelkreis wichtig. So könnte dieser für die Umwandlung von Stamm- in Herzmuskelzellen von Bedeutung sein. „Möglicherweise kann ein Eingreifen in den Regelkreis dabei helfen, im Rahmen einer Therapie Regenerationsprozesse zu stimulieren“, sagt Braun.

Originalpublikation:

miR-1/133a Clusters Cooperatively Specify the Cardiomyogenic Lineage by Adjustment of Myocardin Levels during Embryonic Heart Development
Katharina Wystub et al.; PLoS Genetics, doi:10.1371/journal.pgen.1003793; 2013

11 Wertungen (4 ø)

Die Kommentarfunktion ist nicht mehr aktiv.

Copyright © 2017 DocCheck Medical Services GmbH
Sprache:
DocCheck folgen: