Hörsystem: Ursprung einer Riesensynapse entdeckt

1. Juli 2013
Teilen

Wie lokalisieren wir eine Geräuschquelle? Woher weiß unser Gehirn, wo genau in einem Raum der Geräuschursprung ist? Verantwortlich dafür ist eine Riesenynapse im Gehirn. Wissenschaftler haben den Mechanismus offengelegt, der das Wachstum dieser Synapse antreibt.

Mit einer bemerkenswerten Genauigkeit können Menschen wie auch die meisten Säugetiere den Ursprung eines Geräuschs lokalisieren. Diese Fähigkeit begleitet uns den ganzen Tag über – sei es beim Überqueren der Straße oder bei der Ortung eines klingelnden Handys.

Das Gehirn benutzt für die Ortung einer Schallquelle den Zeit- und Intensitätsunterschied des ankommenden Schallsignals zwischen beiden Ohren. Dazu muss die Hörinformation des jeweils gegenüberliegenden Ohres rasch auf die andere Seite des Gehirns übermittelt werden. In dieser Verbindung spielt eine Riesensynapse, an der Informationen erstaunlich schnell – in weniger als 1/1000 Sekunde – übertragen werden können, eine wesentliche Rolle.

Ein Team um Professor Ralf Schneggenburger von der Technischen Universität Kaiserslautern hat nun die Rolle eines bestimmten Proteins entschlüsselt, welches das Wachstum dieser Synapse anstößt. Diese Entdeckung könnte auch der Erforschung einer Reihe neuropsychiatrischer Krankheiten dienen.

Riesenynapsen ermöglichen schnellere Kommunikation

Normalerweise empfangen Neuronen tausende von Kontaktpunkten – bekannt unter der Bezeichnung Synapse – von vorgeschalteten Neuronen. Innerhalb eines bestimmten Zeitfensters muss ein Neuron mehrere erregende synaptische Signale erhalten, um selbst einen elektrischen Impuls aussenden zu können. So kommt es, dass der Informationsaustausch zwischen den Neuronen in vielen Teilen des Gehirns relativ zufällig erfolgt.

Im auditorischen Teil des Hirns ist dies anders. Synapsen wachsen oft bis zu einer extremen Größe heran: Diese Riesensynapsen heißen Held’sche Calyxsynapsen. Da sie über mehrere Hundert Kontaktpunkte verfügen, sind sie in der Lage auch ein Signal allein zu ihrem nachgeschalteten Neuron zu senden. „Es ist fast wie eine Eins-zu-eins-Kommunikation zwischen den Neuronen“, erklärt EPFL-Professor Ralf Schneggenburger, Leiter der Studie. So können Informationen extrem schnell innerhalb einer Millisekunde verarbeitet werden, während dies in den meisten anderen Neuronenschaltungen mehr als 10 Millisekunden braucht.

Die Bestimmung des Proteins

Zur Isolierung des Proteins, welches für die Wachstumskontrolle des Heldischen Calyx verantwortlich ist, war akribische Forschung notwendig. Die Forscher begannen mit Genexpressionsanalysen bei Mäusen, um unter den ca. 20.000 Genen einer Maus die wesentlich beteiligten Proteine zu identifizieren. Sie fanden Hinweise für die Rolle von sogenannten Proteinen der “BMP”-Famile (“bone morphogenetic proteins”).

Um sicher zu sein, das richtige Protein ausfindig gemacht zu haben, schalteten die Forscher BMP-Proteinrezeptoren im auditiven Teil der Mäusehirne ab. “Das elektrophysiologische Signal des Held’schen Calyx war signifikant verändert”, erklärt Le Xiao, Erstautorin der Studie. “Dies legte einen großen anatomischen Unterschied nahe.”

Anschließend rekonstruierten die Wissenschaftler die Synapse dreidimensional aus Ultradünnschnitten, die unter dem Elektronenmikroskop beobachtet wurden. Anstelle eines großen Held’schen Calyx, der fast die Hälfte des Neurons umfasst, zeigte die 3D-Aufnahme des Neurons mehrere kleine Synapsen. “Das zeigt, dass der Ablauf, in welchen das BMP-Protein eingebunden ist, nicht nur das Wachstum einer Synapse beeinflusst, sondern auch eine Auswahl durch Unterbindung der anderen Synapsen vollzieht”, erklärt Schneggenburger.

Der Schlüssel zu manch psychiatrischem Puzzle

Die Studie macht einen ersten Schritt zum Verständnis der molekularen Abläufe während der Entwicklung der ungewöhnlich großen Calyxsynapsen im Hörsystem von Mäusen. Ein besseres Verständnis der molekularen Mechanismen der Synapsenentwicklung könnte wichtig sein für die zukünftige Entschlüsselung von zentralnervöser Schwerhörigkeit, die z. Zt. nur wenig verstanden ist. Die Ergebnisse zeigen auch, dass das BMP-Protein ebenfalls eine wichtige Rolle bei der Entstehung von synaptischen Verbindungen im Gehirn von Säugetieren spielt. Schneggenburger und seine Kollegen forschen derzeit an seiner Rolle in anderen Bereichen des Gehirns. “Manche neuropsychiatrische Erkrankungen, wie bspw. Schizophrenie und Autismus, sind durch die abnormale Entwicklung von synaptischer Konnektivität in verschiedenen Bereichen des Gehirns charakterisiert“, erklärt Schneggenburger. Durch die Identifizierung und Erklärung der Rolle verschiedener Proteine in dieser Entwicklung hoffen die Wissenschaftler, mehr Licht in diese schlecht verstandene Erkrankungen zu bringen.

Originalpublikation:

BMP signaling specifies the development of a large and fast CNS synapse
Le Xiao et al.; Nature Neuroscience, doi: 10.1038/nn.3414; 2013

31 Wertungen (4.65 ø)
HNO, Medizin

Die Kommentarfunktion ist nicht mehr aktiv.



Copyright © 2017 DocCheck Medical Services GmbH
Sprache:
DocCheck folgen: