Innerer Taktgeber: Blick ins biologische Uhrwerk

10. Juni 2013
Teilen

In fast allen Organismen steuert die innere Uhr zahlreiche Prozesse. Wichtige Regulatoren dieses biologischen Taktgebers sind sogenannte Cryptochrome, deren 3D-Struktur nun aufgeklärt wurde – möglicherweise eröffnet dies auch neue therapeutische Möglichkeiten.

In der Genaktivität über das Hormon– und Immunsystem bis zum Verhalten: Viele biologische Vorgänge laufen nach einem bestimmten Rhythmus ab, der von der inneren Uhr bestimmt wird und meist dem Tag/Nacht-Wechsel folgt. Wichtige Regulatoren dieses inneren Taktgebers sind sogenannte Cryptochrome. Die Cryptochrome sind bei Säugetieren an der Steuerung tagesperiodisch regulierter Prozesse – etwa dem Glukosestoffwechsel – entscheidend beteiligt. Bei der Taufliege Drosophila spielt die Regulation des Cryptochroms durch Blaulicht eine wichtige Rolle bei der Synchronisation der inneren Uhr mit dem Hell-Dunkel-Zyklus der Umgebung.

Seit Jahren versuchen weltweit Forscher, die 3D-Strukturen der Säugetier-Cryptochrome (mCRY1/2) und des Drosophila-Cryptochroms (dCRY) zu erhalten. „Denn erst diese geben uns die hochaufgelöste Information, die wir brauchen, um daraus detaillierte Einsichten in die Mechanismen der Regulation der inneren Uhr durch mCRY beziehungsweise in die Wirkungsweise von dCRY zu gewinnen“, sagt PD Dr. Eva Wolf vom Adolf-Butenandt-Institut der LMU, die mit ihrem Team nun mithilfe von Röntgenstrukturanalysen hochaufgelöste 3D-Strukturen sowohl des Taufliegen-Cryptochroms wie auch des Säugetier-Cryptochroms erstellen konnte.

CRYs geben den Takt vor

Die nun entschlüsselten Strukturen ermöglichen grundlegend neue Einsichten in die molekularen Mechanismen, die die innere Uhr einstellen. So konnten die Wissenschaftler zeigen, dass die Lichtsynchronisation der Drosophila-Uhr auf einem neuartigen Phototransduktionsmechanismus beruht und mithilfe lichtinduzierter Strukturänderungen von dCRY erfolgt.

„Die Strukturanalyse von mCRY1 zeigte, wie dieses Cryptochrom mit weiteren Uhrproteinen interagiert. Durch diese Interaktionen wird die Stabilität von mCRY1 reguliert – und somit auch der Takt der inneren Uhr eingestellt“, sagt Wolf. Bestimmte Regionen von mCRY1 vermitteln zudem die Hemmung eines Transkriptionsfaktors, der seinerseits zahlreiche Gene steuert, die tagesperiodisch regulierte Prozesse und Verhaltensweisen beeinflussen.

Leben gegen die innere Uhr macht krank

Die Steuerung der inneren Uhr hat auch medizinische Bedeutung: Wer ständig gegen seine innere Uhr lebt, dem drohen nicht „nur“ Schlafstörungen, sondern auch schwere Erkrankungen. „Schichtarbeiter etwa leiden häufiger unter Krebs oder dem Metabolischen Syndrom”, sagt Wolf. mCRYs spielen etwa bei der Regulation des Glukosespiegels eine Rolle – kommt diese aus dem Takt, können schwere Stoffwechselstörungen wie Typ-2-Diabetes die Folge sein. „Unsere Ergebnisse können hier neue therapeutische Möglichkeiten eröffnen, indem die Entwicklung von Medikamenten vorangetrieben wird, die bei den Cryptochromen ansetzen“, hofft Wolf.

Originalpublikation:

Crystal structures of Drosophila Cryptochrome and mouse Cryptochrome1 provide insights into circadian function
Eva Wolf et al.; Cell, doi: 10.1016/j.cell.2013.05.011; 2013

34 Wertungen (4 ø)

Die Kommentarfunktion ist nicht mehr aktiv.



Copyright © 2017 DocCheck Medical Services GmbH
Sprache:
DocCheck folgen: