DNA-Schutz: Aufräumdienst in der Zell-WG

7. Juni 2016
Teilen

Entstehen Abfallprodukte im Zellstoffwechsel, schützen zelluläre Reparaturvorgänge die DNA vor entzündlichen Erkrankungen. Das Enzym TREX1 und die Kernproteine RPA und Rad51 sind dabei von Bedeutung. Fehlt TREX1, können Autoimmunerkrankungen die Folge sein.

Kinder, denen aufgrund von Mutationen das Enzym TREX1 fehlt, entwickeln das Aicardi-Goutières-Syndrom, das mit schweren entzündlichen Veränderungen des Gehirns und der Haut einhergeht und klinisch Ähnlichkeiten mit der Autoimmunkrankheit Lupus erythematosus aufweist.

Für die Entzündungsprozesse wird Typ 1-Interferon verantwortlich gemacht, ein Botenstoff des angeborenen Immunsystems, der normalerweise durch eine Virusinfektion aktiviert wird. Die Aktvierung von Typ 1-Interferon wird über Sensoren des angeborenen Immunsystems vermittelt, die virale DNA im Zytoplasma der Zelle erkennen.

Diese Sensoren sind aber nur bedingt in der Lage, virale DNA von körpereigener DNA zu unterscheiden. Daher stellt die räumliche Trennung der im Zellkern befindlichen körpereigenen DNA sicher, dass diese nicht in Berührung mit den im Zytoplasma befindlichen DNA-Sensoren kommt.

Bindung von DNA-Abfallprodukten an Kernproteine RPA und Rad51

Auch TREX1 ist eine DNA-abbauende Nuklease, die sich außerhalb des Zellkernes, im umgebenen Zytoplasma befindet. Das Team um Prof. Lee-Kirsch aus der Klinik für Kinder- und Jugendmedizin des Universitätsklinikums Carl Gustav Dresden ging daher der Frage nach, ob TREX1 am Abbau der DNA-Abfallprodukte aus dem Zellkern beteiligt sein könnte.

Die Dresdner Forscher konnten zunächst zeigen, dass kurze DNA-Abfallprodukte aus der DNA-Reparatur zwar prinzipiell über die Kernporen den Zellkern verlassen können, der Großteil dieser DNA-Fragmente jedoch durch die Bindung an die Kernproteine RPA und Rad51 im Zellkern zurückgehalten wird.

Weiterhin konnten sie nachweisen, dass TREX1 an der äußeren Membran des Zellkerns verankert ist und dafür sorgt, dass kurze DNA-Fragmente, denen es gelingt, den Zellkern zu verlassen, umgehend abgebaut werden. Somit stellt TREX1 sicher, das Zytoplasma von körpereigener DNA aus dem Zellkern frei zu halten.

Chronische DNA-Schäden durch Aktvierung von Typ 1-Interferon

Bei Patienten mit einem TREX1-Mangel können die DNA-Abfallprodukte nicht mehr abgebaut werden und reichern sich in der Zelle an. Im Zytoplasma führt dies dazu, dass die nicht abgebauten DNA-Abfallprodukte von Sensoren des angeborenen Immunsystems fälschlicherweise als virale DNA erkannt werden, was eine Aktvierung von Typ 1-Interferon nach sich zieht.

Im Zellkern führt die Anhäufung von DNA-Abfallprodukten außerdem dazu, dass diese vermehrt an RPA und RAD51 gebunden werden. RPA und Rad51 spielen eine wichtige Rolle bei der Replikation und Reparatur von DNA.

Aufgrund der vermehrten Bindung an die nicht abgebauten DNA-Abfallprodukte, stehen nicht mehr ausreichend freie RPA- und Rad51-Moleküle für die DNA-Replikation und Reparatur zur Verfügung, was in der Zelle Stress auslöst und chronische DNA-Schäden zur Folge hat.

„TREX1 spielt daher zusammen mit RPA und Rad51 eine wichtige Rolle bei der Abfallentsorgung in der Zelle und schützt den Körper auf diese Weise vor einer inadäquaten Aktivierung des Immunsystems durch körpereigene DNA“, so Dr. Christine Wolf, die Erstautorin der Publikation. Die Erkenntnisse eröffnen auch erste Ansatzpunkte für eine mögliche therapeutische Intervention mit Medikamenten, die der chronischen Typ 1-Interferon-Aktivierung entgegenwirken.

Originalpublikation:

RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA
Christine Wolf et al.; Nature Communications, doi: 10.1038/NCOMMS11752; 2016

7 Wertungen (4.14 ø)

Die Kommentarfunktion ist nicht mehr aktiv.



Copyright © 2017 DocCheck Medical Services GmbH
Sprache:
DocCheck folgen: