Nervenzelle: Steuerprotein baut Zellgerüst

26. Oktober 2015
Teilen

Mittels hochaufgelöster 3D-Mikroskopie wurde ein für die Ausbildung des Cytoskeletts von Nervenzellen wesentlicher Signalweg aufgeklärt. Es wurde gezeigt, wie die dynamische Bildung von Aktinfilamenten zeitlich und räumlich gesteuert wird.

Vorsichtig tastend wächst eine Verzweigung aus der Nervenzelle, gleich darauf verschwindet sie wieder. Nur Minuten später bildet sich an genau der gleichen Stelle ein neuer Auswuchs, kurzlebig wie der erste. Ein drittes Mal beginnt ein Punkt der Nervenzelle heller zu leuchten, und jetzt wird der neue Zweig eines Nervenzellausläufers länger und länger, bis er schließlich einen Nachbarzweig erreicht. Eine hochaufgelöste 3D-Live-Mikroskopie ermöglicht einen Blick in die Kinderstube der Nervenzellen und zeigt, wie sich deren stark verzweigte Gestalt ausprägt. Die verästelten Formen verschiedener Nervenzellen sind für die Bildung neuronaler Netzwerke, den Transport von Signalen und die korrekte Signalverarbeitung im Gehirn unabdingbar.

Aktin-Gerüstbau in hochaufgelöster 3D-Live-Mikroskopie

Stabilisiert wird diese Zellform von einem inneren Fasergerüst, das aus Zusammenlagerungen vieler Kopien des vergleichsweise kleinen Proteins Aktin besteht und das die Zelle je nach Bedarf auf-, aus- und auch wieder abbauen kann. Die Bildung dieser Aktinfasern erforschen die Biochemiker Prof. Dr. Britta Qualmann und PD Dr. Michael Kessels am Universitätsklinikum Jena. „Mit dem Protein Cobl konnten wir vor einigen Jahren einen wichtigen Akteur in diesem Baugeschehen identifizieren“, so Qualmann. „Woher Cobl aber weiß, wann und wo es loslegen soll, war bislang völlig unklar“, ergänzt Kessels.

Zur Beantwortung dieser Frage konnten jetzt Wenya Hou, Maryam Izadi und Sabine Nemitz vom Institut für Biochemie I wesentliche Erkenntnisse beitragen. In hochaufgelösten 3D-Live-Mikroskopieexperimenten verfolgten die Nachwuchswissenschaftlerinnen dabei die Bildung von Aktinfasern und klärten deren molekularen Grundlagen auf. „Ein bis zwei Minuten lang sammelt sich Cobl an deutlich umgrenzten Stellen in sich entwickelnden Neuronen an, und dann treten genau dort schlagartig Aktin-reiche Ausstülpungen auf, die zu dendritischen Verzweigungen führen können“, beschreibt Izadi die Beobachtungen. Offensichtlich lässt die Anhäufung von Cobl die Aktingerüstfasern lokal stark wachsen, und dieser innere Druck direkt an der Zellmembran bricht sich dann in einer Verzweigung eines dendritischen Zellausläufers nach außen Bahn.

Calmodulin als wichtiger Spieler

Durch eine Vielzahl weiterer Experimente konnten die Biochemikerinnen auch die zeitliche und räumliche Steuerung dieser Cobl-Maschinerie im Detail aufklären. Dabei untersuchten sie zum Beispiel, mit welchen Proteinen Cobl während seiner Bautätigkeit reagiert, ob und wie diese Interaktionen schaltbar sind und wer die Steuerung der kritischen Einzelteile der Cobl-Aktinfilament-Bildungsmaschine übernimmt. Nemitz: „Mit dem Protein Calmodulin haben wir einen weiteren Bindungspartner von Cobl gefunden – für unser Verständnis der molekularen Steuerung der Cobl-Maschinerie war das der Durchbruch.“ „Calmodulin lagert sich an bestimmte Bereiche von Cobl an und kontrolliert dadurch sowohl dessen Aktivität in Aktinfilamentbildungen, als auch die Zielsteuerung von Cobl zu bestimmten Abschnitten der Plasmamembran von Nervenzellen“, fasst Hou zusammen. Die Doktorandinnen haben dabei auch gezeigt, dass es ohne Calmodulin gar nicht geht: Wurde das Steuerprotein gehemmt oder Cobl so verändert, dass es sich von Calmodulin nicht mehr steuern ließ, dann konnte sich die Gestalt der Nervenzellen nicht mehr richtig entwickeln.

1544_Nervengeruest_Block

Nervenzelle im Mäusegehirn: Ein dynamisches Zellgerüst formt und stabilisiert die vielen feinen Verästelungen, die die Erregungsleitung von Zelle zu Zelle ermöglichen. © Institut für Biochemie I/UKJ

Kalziumsignale steuern Zellskelett

„Der Cobl-Anhäufung und dem Verzweigungswachstum geht eine Erhöhung der Kalzium-Konzentration voraus; das Calmodulin selbst wird dabei durch Kalzium aktiviert“, so Qualmann. Eine Vielzahl von Zellfunktionen wird durch Kalziumsignale gesteuert, dass auch die Ausbildung von Aktinfasern dazugehört, war bislang unbekannt. In Nervenzellen ist das Kalziumniveau sehr niedrig und stark reguliert. „Eine direkte Steuerung der Gestalt sich entwickelnder Neurone über nur kurzzeitige und lokal begrenzte Kalziumsignale ist also ein sehr elegantes Prinzip“, führt Kessels aus, „allerdings führen zu hohe Kalziumkonzentrationen, wie sie zum Beispiel auch bei traumatischen Kopfverletzungen oder einem Schlaganfall auftreten, zum Absterben von Neuronen.“

Mit ihren Ergebnissen können die Jenaer Wissenschaftler zum Verständnis der Veränderungen und Störungen von Nervenzellfunktionen beitragen, die durch solche Signale ausgelöst werden. „Und wir verstehen die Steuerung des Zellskeletts besser“, so Qualmann, „die in der Entwicklung des Gehirns sicherstellt, dass Nervenzellen die für ihre Funktion notwendige, sehr ausgebreitete und verzweigte Gestalt annehmen und sich vernetzen können.“

Originalpublikation:

The actin nucleator Cobl is controlled by calcium and calmodulin.
Wenya Hou et al.; PLOS Biology, doi:10.1371/journal.pbio.1002233; 2015

8 Wertungen (4.63 ø)

Die Kommentarfunktion ist nicht mehr aktiv.

Copyright © 2017 DocCheck Medical Services GmbH
Sprache:
DocCheck folgen: