Hypakusis: Molekulare Reinigung gegen Stau

13. Oktober 2015
Teilen

Um eine stete synaptische Übertragung von Hörinformationen zu sichern, muss ein bestimmtes Adapterprotein mit dem Freisetzungsfaktor Otoferlin zusammenarbeiten. Fehlt der Adapter, kommt es zum „Stau“, die Übertragung wird verlangsamt und Schwerhörigkeit entsteht.

Die Umwandlung von akustischer Information in ein Nervensignal erfolgt an den Bändersynapsen zwischen Haarsinneszellen und Hörnervenzellen im Innenohr. Die beachtliche Übertragungsrate dieser Synapse liegt bei hunderten Signalen pro Sekunde. Dies erfordert die hochkoordinierte Bereitstellung, Fusion und „Entsorgung“ von Botenstoffbläschen an der aktiven Zone der Botenstofffreisetzung. Für diese Spitzenleistung wird das „Hörgen“ Otoferlin benötigt, aber die zugrundeliegenden Interaktionen von Otoferlin mit anderen Bestandteilen der Synapse sind noch nicht verstanden.

Was begrenzt die Rate der Übertragung an der Haarzellsynapse und wie fördert Otoferlin die unermüdliche Botenstofffreisetzung? An jeder der nur etwa einen halben millionstel Meter großen aktiven Zonen können während der Stimulation vermutlich zirka 1.000 Bläschen pro Sekunde ihre Botenstoffe freisetzen. Das machen sie, indem sie mit der aktiven Zone verschmelzen. Dieses hohe „Verkehrsaufkommen“ bedingt, dass sehr viel Eiweiß und Lipidmembran aus den Bläschen in die Zellmembran der aktiven Zone gelangen. Die gestrandeten Eiweiß- und Lipidmoleküle müssen rasch abtransportiert werden, damit neue Bläschen an die Freisetzungsstellen der aktiven Zone andocken können (Abb. 1). Wie genau diese „Reinigung“ der Freisetzungsstellen geschieht, war bisher jedoch unklar.

1542_Ohr_Block(1)

Abb. 1: „Reinigung“ der Freisetzungsstellen für synaptische Bläschen an der Bänder-Synapse. Nach dem Verschmelzen synaptischer Bläschen (rosa) mit der Zellmembran wird durch Interaktion von AP-2 (grün) mit Otoferlin (rot) ein schnellerer Abtransport von Eiweiß und Lipidmembran von der Freisetzungsstelle an der aktiven Zone ermöglicht. © Dr. SangYong Jung

AP-2 und Otoferlin in enger Bindung

Mithilfe genetisch veränderter Mäuse, denen das Adapter-Eiweiß AP-2µ fehlt, haben die Göttinger und Berliner Forscher nun herausgefunden, dass genau dieses Eiweiß bei der „Reinigung“ der Freisetzungsstellen eine wichtige Rolle spielt. Fehlt den Haarsinneszellen das Adapter-Eiweiß AP-2µ, sind die Tiere hochgradig schwerhörig (rote Kurve in Abb. 2). Diese Schwerhörigkeit ergibt sich aus einem mangelnden Nachschub an freisetzungsbereiten Botenstoffbläschen wie mit mehreren experimentellen und mathematischen Methoden nachgewiesen wurde. Dr. Carolin Wichmann, Gruppenleiterin am Institut für Auditorische Neurowissenschaften an der Universitätsmedizin Göttingen sagt: „Überrascht waren wir davon, dass die Verminderung der Freisetzung bereits 20 tausendstel Sekunden nach Beginn der Stimulation sichtbar war. Bislang dachte man, dass AP-2 nur eine Rolle bei der deutlich langsameren Wiederherstellung von Botenstoffbläschen spielt.“

Um den zugrundeliegenden Mechanismus und die Rolle von AP-2 für die Funktion der Haarzellsynapse zu ergründen, untersuchten die Wissenschaftler die Interaktion von AP-2 mit synaptischen Proteinen und fanden eine Bindung an Otoferlin, dem selbst eine Rolle beim Nachschub von freisetzungsbereiten Botenstoffbläschen zugeschrieben wird. Dr. Tanja Maritzen sagt: „Wir fanden heraus, dass AP-2 und Otoferlin über mindestens zwei Kontaktstellen aneinander binden und dass AP-2 für die Verfügbarkeit von Otoferlin von großer Bedeutung ist.“

1542_Ohr1_Block(1)

Abb. 2: Schwerhörigkeit in genetisch veränderten Mäusen ohne AP-2 und Wiederherstellung durch Gentherapie. Mäuse, denen aufgrund genetischer Manipulation im Innenohr das Gen für AP-2 fehlt, haben deutlich erhöhte Hörschwellen (rot), wohingegen nach Gentherapie durch Wiedereinbringen des Gens für AP-2 die Hörfähigkeit fas komplett wiederhergestellt wurde (blau). © Tobias Moser

Unschädliche Viren statt defekter Gene

Aber wie kann die Interaktion dieser beiden Eiweiße den Nachschub von freisetzungsbereiten Botenstoffbläschen fördern? Dr. Andreas Neef sagt als einer der korrespondierenden Autoren: „Mit der Kombination systemphysiologischer Messungen der synaptischen Freisetzung an einzelnen aktiven Zonen und mathematischer Modellbildung konnten wir nahelegen, dass AP-2 durch seine Bindung an Otoferlin die „Reinigung“ der Freisetzungsstellen beschleunigt.“ Nach Ansicht der Wissenschaftler wird auf diese Weise das freigesetzte Material schneller von der aktiven Zone entfernt, sodass dort neue Botenstoffbläschen für die nächste Runde der Freisetzung andocken können (Abb. 1). Fehlt AP-2 oder Otoferlin, kommt es quasi zum „Stau“ und das Hören ist gestört.

Die Studie demonstriert, dass defekte Gene prinzipiell mithilfe unschädlicher Viren ersetzt werden können. Dr. SangYong Jung, Erstautor der Studie, sagt: „Wenn wir Viren, die die Erbinformation für AP-2µ enthielten, in die Hörschnecke der tauben Mäuse einbrachten, konnten wir die Funktion der Haarzellsynapsen und das Hören nahezu vollständig wiederherstellen.“ Die Leiter der Studie, Prof. Volker Haucke und Prof. Tobias Moser sind sich einig, dass die Studie dabei hilft, die Funktion von AP-2 und der synaptischen Übertragung zu verstehen, und zugleich den Weg für die zukünftige Gentherapie am Menschen bahnt. Prof. Haucke: „Das Hochleistungssystem der Haarzellsynapse hat uns ermöglicht, die Rolle von AP-2 an der aktiven Zone besser zu verstehen. AP-2 und Otoferlin arbeiten quasi als „Reinigungs-Team“, um die für das Hören erforderlichen spektakulären Übertragungsraten zu realisieren.“ Prof. Moser ergänzt: „Auch wenn bislang keine humane Schwerhörigkeit bekannt ist, die aus Defekten des AP-2 Gens resultiert, macht diese Studie Hoffnung, dass die viral-vermittelte Gentherapie in absehbarer Zeit möglich werden kann. So sind das fast normale Hören des behandelten Ohres und das Ausbleiben einer Virus-Ausbreitung (etwa in das andere Ohr) starke Indizien dafür, dass eine frühzeitige Behandlung eine Auswahl genetischer Schwerhörigkeiten effizient bekämpfen kann […].“

Originalpublikation:

Disruption of adaptor protein 2μ (AP‐2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing.
SangYong Jung et al.; EMBO Journal, doi: 10.15252/embj.201591885; 2015

19 Wertungen (4.74 ø)

Die Kommentarfunktion ist nicht mehr aktiv.

1 Kommentar:

dr. med.dent. Wolfgang Stute
dr. med.dent. Wolfgang Stute

die Synapsen sitzen voller Mitochondrien ,wenn dort nicht mehr genügend ATP in den Atmungsketten produziert wird ,tritt die beschriebene Problematik auf .
Auch bei Tinnitus u. Hörsturz liegen hier die basics für Störungen u. Ausheilprozessen

#1 |
  0


Copyright © 2017 DocCheck Medical Services GmbH
Sprache:
DocCheck folgen: